
THE LECTURE 8

COLLECTIONS

LIST OF COLLECTIONS

 Array

 System.Collections

 Hashtables

 Stack, Queue

 SortedList

 Collection Interfaces

 System.Collections.Generic

 List<T>

ARRAY

 Array is a data structure that contains several variables of the same type.

type [] arrayName;

 Array has the following properties:

 array can be Single-dimensional, Multidimensional or Jagged.

 The default value of numeric array elements are set to zero, and reference elements are set to null.

 Arrays are zero indexed: an array with n elements is indexed from 0 to n-1.

 Array elements can be of any type, including an array type.

 Array types are reference types derived from the abstract base type Array. It implements IEnumerable and

IEnumerable<(Of <(T>)>), for using in foreach

ARRAY. EXAMPLES

element access

create

number of elements

int[] a = new int[5];

int [,] myMatrix=new int [6,8];

a[0] = 17;

a[1] = 32;

int x = a[1];

int l = a.Length;

default to 0

default to false

set to given values

bool[] a = new bool[10];

int[] b = new int[5];

int[] c = new int[5] { 48, 2,

55, 17, 7 };

int [] ages={5,6,8,9,2,0};

ARRAY. EXAMPLES

 Multidimensional arrays:

string [,] names = new string[5,4];

 Array-of-arrays (jagged):

byte [][] scores = new byte[5][];

for (int i = 0; i < scores.Length; i++)

{

scores[i] = new byte[4];

}

 Three-dimensional rectangular array:

int [, ,] buttons = new int [4, 5, 3];

ARRAY. BENEFITS. LIMITATIONS

 Benefits of Arrays:

 Easy to use: arrays are used in almost every programming language

 Fast to change elements.

 Fast to move through elements: Because an array is stored continuously in memory, it's quick and easy to cycle through
the elements one-by-one from start to finish in a loop.

 You can specify the type of the elements: When you create an array, you can define the datatype.

 Limitations of Arrays:

 Fixed size: Once you have created an array, it will not automatically items onto the end.

 Inserting elements mid-way into a filled array is difficult.

SYSTEM.COLLECTIONS. ARRAYLIST

 System.Collections namespace

 ArrayList, HashTable, SortedList, Queue, Stack:

 A collection can contain an unspecified number of members.

 Elements of a collection do not have to share the same datatype.

 An object's position in a collection can change whenever a change occurs in the whole, herefore, the

position of a specific object in the collection can vary.

ARRAYLIST

 ArrayList is a special array that provides us with some functionality over and above that of the standard

Array.

 We can dynamically resize it by simply adding and removing elements.

using System.Collections;

class Department

{

ArrayList employees = new ArrayList();

...

}

create ArrayList
to store Employees

array of object references

ArrayList

objectemployees

ARRAYLIST SERVICES

public class ArrayList : IList, ICloneable

{

int Add (object value) // at the end

void Insert(int index, object value) ...

void Remove (object value) ...

void RemoveAt(int index) ...

void Clear () ...

bool Contains(object value) ...

int IndexOf (object value) ...

object this[int index] { get... set.. }

int Capacity { get... set... }

void TrimToSize() //minimize memory

...

}

control of memory
in underlying array

add new elements

remove

containment testing

ARRAYLIST. BENEFITS AND LIMITATION

 Benefits of ArrayList:

 Supports automatic resizing.

 Inserts elements: An ArrayList starts with a collection containing no elements.

 Flexibility when removing elements.

 Easy to use.

 Limitation of ArrayLists:

 There is one major limitation to an ArrayList: speed.

 The flexibility of an ArrayList comes at a cost, and since memory allocation is a very expensive business the fixed

structure of the simple array makes it a lot faster to work with.

STACK

 Stack: last-in-first-out

using System.Collections;

class Trace

{

Stack callChain = new Stack();

...

}

create Stack

to store sequence
of method calls

Stack s = new Stack();

s.Push("aaa");

s.Push("bbb");

string t = (string)s.Peek();

string u = (string)s.Pop();

...

add

examine

remove

QUEUE

 Queue: first-in-first-out using System.Collections;

class Watcher

{

Queue events = new Queue();

...

}

create Queue

to store events

Queue q = new Queue();

q.Enqueue("aaa");

q.Enqueue("bbb");

q.Enqueue("ccc");

string s = (string)q.Peek();

string t = (string)q.Dequeue();

add

examine

remove

HASHTABLE

 Represents a collection of key/value pairs that are organized based on the hash code of the key.

 The objects used as keys must override the GetHashCode method and the Equals method.

 Benefits of Hashtable:

 Non-numeric indexes allowed. Key can be numeric, textual, or even in form of a date. But can’t be null
reference.

 Easy inserting elements.

 Easy removing elements.

 Fast lookup.

create

add

update

retrieve

Hashtable ages = new Hashtable();

ages["Ann"] = 27;

ages["Bob"] = 32;

ages.Add("Tom", 15);

ages["Ann"] = 28;

int a = (int)ages["Ann"];

HASHTABLE

 Limitations of Hashtable:

 Performance and speed: Hashtable objects are slower to update but faster to use in a look-up than ArrayList

objects.

 Keys must be unique: An array automatically keeps the index values unique. In a Hastable we must monitor the key

uniqueness.

 No useful sorting: The items in a Hashtable are sorted internally to make it easy to find objects very quickly. It's not

done by keys or values, the items may as well not be sorted at all.
Hashtable ages = new Hashtable();

ages["Ann"] = 27;

ages["Bob"] = 32;

ages["Tom"] = 15;

foreach (DictionaryEntry entry in ages)

{

string name = (string)entry.Key;

int age = (int) entry.Value;

...

}

enumerate entries

get key and value

SORTEDLIST

 Represents a collection of key/value pairs that are sorted by the keys

 Are accessible by key and by index.

 A SortedList object internally maintains two arrays to store the elements of the list

 Use the new keyword when creating the object. Each adding item is automatically inserted in the correct position in the
list, according to a specific IComparer implementation .

SortedList stlShippers = new SortedList();

stlShippers["cp"]="Canada Post";

stlShippers["fe"]="Federal Express";

stlShippers["us"]="United State Postal Service";

foreach (DictionaryEntry de in stlShippers)

{

Console.WriteLine("Key = {0}, Value = {1}", de.Key, de.Value);

}

ms-help://MS.MSDNQTR.v90.en/fxref_mscorlib/html/fbd8c271-9930-4114-782d-8a1df2136439.htm

LIST<T>

 List generic class:

[SerializableAttribute]

public class List<T> : IList<T>, ICollection<T>,

IEnumerable<T>, IList, ICollection, Ienumerable

 The List class is the generic equivalent of the ArrayList class. It implements the IList generic interface using an

array whose size is dynamically increased as required.

 The List class uses both an equality comparer and an ordering comparer.

 Methods such as Contains, IndexOf, LastIndexOf, and Remove use an equality comparer for the list elements.

 If type T implements the IEquatable generic interface, then the equality comparer is the Equals method of that

interface; otherwise, the default equality comparer is Object.Equals(Object).

LIST<T>

 Methods such as BinarySearch and Sort use an ordering comparer for the list elements.

 The List is not guaranteed to be sorted. You must sort the List before performing operations (such as

BinarySearch) that require the List to be sorted.

 Elements in this collection can be accessed using an integer index. Indexes in this collection are zero-

based.

 List accepts a null reference as a valid value for reference types and allows duplicate elements.

